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Abstract-The heat transfer conditions that apply at the boundary between a porous medium and a 
homogeneous fluid are developed as flux jump conditions based on the non-local form of the volume 
averaged tbermal energy equations for both the fluid and the solid. These jump conditions take the form 
of surface transport equations that contain excess surface accumulation, convection, and conduction, in 
addition to a term representing the excess surface heat exchange. It would appear that this latter term 
controls the manner in which the flux from the porous medium to the homogeneous fluid is distributed 
between the solid and fluid phases that make up the porous medium. 0 1997 Elsevier Science Ltd. All 

rights reserved. 

1. INTRODUCTION 

The system under consideration is illustrated in Fig. 
1 where we have identified the porous medium as the 
w-region and the homogeneous fluid as the q-region. 
The governing equations and interfacial conditions 
that describe the heat transfer process in this system 
are given by 

(PC& 2 f (PC,)BV *(v,J-,) 

= V &VT,) in the b-phase (1) 

B.C.1 :rO = T, at the /?-a interface (2) 

B.C.2. -ngo - k,VT, = --ns; k,VT, 

at the p-0 interface (3) 

(PC,),, 2 = V *(kE,VTO) in the a-phase. (4) 

The analysis of the fluid mechanical problem is 
described elsewhere [l-3], and we will make use of 
those results without discussion. 

The fluid flow and heat transfer processes that occur 
in the system shown in Fig. 1 are comparable to what 
one finds in packed bed catalytic reactors [4-81, in 
processes involving transpiration cooling [9-l 11, in 
drying processes [12] and in a variety of other tech- 

t Author to whom correspondence should be addressed. 

nological applications [13-l 81. The heat transfer pro- 
cess associated with the boundary between the w and 
q-regions has been analyzed by Prat [ 19-211 and by 
Sahraoui and Kaviany [22-241 in terms of numerical 
experiments. Both studies were restricted to the one- 
equation model of heat transfer processes, and in this 
work we will deal primarily with the two-equation 
model [17, 25-311. 

When several simplifications are made in the flux 
jump conditions, one obtains the following two results 

Flux conditions at the co--q boundary 
p-phase 

a-phase 

-hs,,(<T,)!-(To);) (5) 

n,;(K,,*V<T,X) = &,(<T,X-(T,X). (6) 

Here K&, represents the thermal dispersion tensor for 
the b-phase in the o-region, while K, represents the 
effective thermal conductivity tensor for the solid 
phase. The last term in both these results represents 
the excess surface heat exchange between the p and e- 
phases, and it is this term that controls how the flux 
at the wn boundary is distributed between the fluid 
and solid phases. Equations (5) and (6) are obtained 
on the basis of several simplifications, and probably 
the most important of these is the imposition of the 
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NOMENCLATURE 

= A,,/Y, interfacial area per unit 
volume [rn-‘1 
= A,,, area of the b-0 interface 
contained in the averaging volume 
WI 
vector field that maps V( T# onto 
Tfl [ml 
vector field that maps V( T,)" onto 
G [ml 
vector field that maps V( Ta)B onto 
R [ml 
vector field that maps V( To)" onto 
fc [ml 
heat capacity [kcal kg-’ K-‘1 
volumetric heat capacity of the 
b-phase [kcal mm3 K-‘1 
volumetric heat capacity of the 
o-phase [kcal mm3 K-‘1 
excess P-phase surface heat capacity 
[kcal me2 K-‘1 
excess a-phase surface heat capacity 
[kcal m-’ K-l] 
gravity vector [m” s-‘1 
traditional heat transfer coefficient 
[kcal me3 s-’ K -‘I 
boundary region heat transfer 
coefficient [kcal me3 ss’ K-‘1 
thermal conductivity of the P-phase 
[kcal me2 s-’ K-‘1 
thermal conductivity of the a-phase 
[kcal m-* s-’ K-‘1 
total /I-phase thermal dispersivity 
tensor associated with V( TB)p 
[kcal m -‘s-l K-‘I 
total P-phase thermal dispersivity 
tensor associated with V( Tc) 
[kcal m-2 s-’ K-‘1 
c-phase effective thermal 
conductivity tensor associated with 
V( T8)@ [kcal me2 s-’ K-‘1 
o-phase effective thermal 
conductivity tensor associated with 
V( T,)" [kcal m-* s-’ K-‘1 
total P-phase thermal dispersivity 
tensor associated with V(T,)i 
[kcal m -2 s-’ K-II 
total /?-phase thermal dispersivity 
tensor associated with V( To); 
[kcal m-* s-’ K-‘1 
a-phase effective thermal 
conductivity tensor associated with 
V( TB)t [kcal me2 s-’ K-‘1 
g-phase effective thermal 
conductivity tensor associated with 
V<T,)L [kcal me2 s-’ K-‘1 

= -n+ unit normal vector directed 
from the P-phase toward the 
a-phase 
outwardly directed unit normal 
vector for the o-region 
outwardly directed unit normal for 
the q-region 
= -n ,,o, unit normal vector directed 
from the o-region toward the 
q-region 
= I-nwvnoq, projection tensor 
pressure in the &phase [N rn-‘1 
radius of the averaging volume [m] 
scalar field that maps ( T,)” - < T8)@ 
onto FJ 
scalar field that maps (To)“- ( T,&B 
onto Fc 
temperature in the B-phase [K] 
intrinsic average temperature in the 
p-phase [K] 
= T,- ( Tg)B, spatial deviation for 
the B-phase [K] 
intrinsic average temperature in the 
P-phase determined by the P-phase 
thermal energy equation valid in 
the homogeneous w-region [K] 
intrinsic average temperature in the 
p-phase determined by the b-phase 
thermal energy equation valid in 
the homogeneous q-region [K] 
temperature in the a-phase [K] 
intrinsic average temperature in the 
a-phase [K] 
= To - (T,)", spatial deviation for 
the o-phase [K] 
intrinsic average temperature in the 
P-phase determined by the a-phase 
thermal energy equation valid in 
the homogeneous w-region [K] 
intrinsic average temperature of 
the P-phase at the G-V boundary [K] 
intrinsic average temperature of the 
a-phase at the en boundary [K] 
a velocity that represents convective- 
like transport in the b-phase that is 
associated with (T&p [m ss’] 
a velocity that represents convective- 
like transport in the b-phase that is 
associated with (To)” [m s-l] 
a velocity that represents convective- 
like transport in the a-phase that is 
associated with ( TB)B [m s-‘J 
a velocity that represents convective- 
like transport in the b-phase that is 
associated with ( T,)” [m s- ‘1 
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NOMENCLATURE fcontinuedl 

velocity in the P-phase [m SC’] 
superficial average velocity for the /I- 
phase [m SC’] 
= ca(vs), intrinsic average velocity 
for the p-phase [m SC’] 
= vg- (v,#, spatial deviation 
velocity for the b-phase [m s-l] 
superficial average velocity for the 
B-phase determined by equations 
valid in the homogeneous w- 
region [m s- ‘1 
superficial average velocity for the p- 
phase that is determined by 
equa.tions that are valid in the 
homogeneous q-region [m s-‘J 
superficial average velocity of the 
P-phase at the w-q boundary [m SC’] 
averaging volume [m’] 
volume of the p-phase contained 
within the averaging volume [m’] 
large-scale volume [m’] 
volume of the entire w-region 
contained in Y”‘, [m3] 
volume of the entire q-region 
contained in Vm [m’] 
position vector locating the centroid 
of the averaging volume [m] 
position vector locating points in the 
/I-phase relative to the centroid 
[ml. 

ireek symbols 

us thermal diffusivity for the /I-phase 
[m’ s-i] 

% = V,/Y, porosity or volume fraction 
of the P-phase 

a, = V,,/Y, volume fraction of the 
a-phase 

P’B viscosity of the B-phase [Ns m-‘1 
Ps density of the /?-phase [kg m-‘1 
PO density of the a-phase [kg m-‘I. 

Subscripts 
B identifies a quantity associated with 

the b-phase 
CT identifies a quantity associated with 

the a-phase 
Pa identifies a quantity associated with 

the p-o interface 
CO identifies a quantity associated with 

the w-region 
rl identifies a quantity associated with 

the q-region 
wr? identifies a quantity associated with 

the O+V region 
S identifies a surface quantity having 

the units of the associated bulk 
quantity times length 

X indicates that a quantity is evaluated 
at the centroid of the averaging 
volume. 

Superscripts 
B indicates an intrinsic volume 

averaged quantity associated with the 
/I-phase 

rs indicates an intrinsic volume 
averaged quantity associated with the 
o-phase. 

condition of local gradient equilibrium. This condition 
suggests that the gradients of ( TP)t and (TO): can 
be equated even when the two temperatures are not 
equal, i.e. ( TB)$ +k (TO): ; however, we must remind 
the reader that the constraints associated with this 
condition have not yet been obtained. 

In order to analyze the heat transfer process that 
takes place in the system illustrated in Fig. 1, we need 
to develop volume averaged transport equations that 
apply within the w-region and we need to develop 
jump conditions that apply at the boundary between 
the w-region and the q-region. If we make use of 
volume averaged equations in the w-region and point 
equations in the q-region, we are confronted with a 
mismatch of length scales that can only be overcome 
by the use of a variable-sized averaging volume in the 
neighborhood of the boundary region. This com- 
plication can be avoided if volume averaged equations 
can be used in both the w and q-regions, and it is this 

approach that we will follow in this paper. This idea 
is illustrated in Fig. 2 where we have shown averaging 
volumes in the w-region (I), in the boundary region 
(II), and in the q-region (III). We will derive the gov- 
erning equations that are applicable in the boundary 
region, and then indicate the special forms that they 
take in the homogeneous w and q-regions. By ‘homo- 
geneous o and q-regions’, we mean those portions of 
the w and q-regions that are not influenced by the 
rapid changes in structure that occur in the boundary 
region. 

1.1. Volume averaging 
The volume averaged forms of the thermal energy 

equations for homogeneous regions have been dis- 
cussed in considerable detail elsewhere [2532] ; how- 
ever, in this particular study we need equations that 
are valid everywhere in the system illustrated in Fig. 
1. This means that we must avoid imposing any length- 
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Fig. 1. Convective heat transfer in a system composed of a porous medium and a homogeneous fluid. 

Fig. 2. Averaging volumes. 
III 

scale constraints since these will fail in the boundary 
region (II) illustrated in Fig. 2. In addition to avoiding 
any length-scale constraints, we must also put forth 
reasonable representations for the non-local transport 
equations that apply in the boundary region, and this 
means that the volume averaged forms of equations 
(l)-(4) must be considered in some detail. After deriv- 

ing generalized energy transport equations that apply 
everywhere, we can extract the special forms that 
describe the heat transfer processes in the homo- 
geneous w and q-regions. 

We begin by defining the superficial volume average 
of some function $a associated with the p-phase 
according to 

(7) 

Here Va(x) is the volume of the B-phase contained 
within the spherical averaging volumes that are shown 
in Fig. 2, and the position vectors x and yp are ident- 
ified in Fig. 3. There we have indicated that x rep- 
resents the position vector locating the centroid of the 
averaging volume, and that yg represents the position 
vector locating points in the j-phase relative to the 
centroid. Equation (7) clearly indicates that volume 
averaged quantities are associated with the centroid 
and that integration is carried out with respect to the 
components of ya. In general, we will avoid the precise 
nomenclature used in equation (7) and represent the 
super$cial average of $a 

while the intrinsic average is expressed in the form 

(8) 
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Both these averages will be used in our theoretical 
development and they are related by 

(:*B) = s&*sY. (10) 

The porosity ag is dlefined explicitly as 

Eg = v,/v (11) 

and we note that in the boundary region eg undergoes 
significant changes over a distance equivalent to the 
radius of the averaging volume, Y,,, that is illustrated 
in Fig. 2. 

In terms of the nomenclature illustrated in equation 
(S), we express the superficial average of equation (1) 
as 

C 
(~,)a 2 + (P&V .(vgT~) 

> 
= (V *(k,VI’g)). 

(12) 

Throughout this development we will ignore vari- 
ations of the physical properties within the averaging 
volume, and this allows us to express the first term in 
equation (12) as 

((PC,dg) =(,,),($). (13) 

We consider the o-phase to be rigid and this allows us 
to interchange integration and differentiation in order 
to express the accumulation of thermal energy in the 
form 

((pcp),~) =wpy. (14) 

Use of the relation between the superficial average 
and the intrinsic average given by equation (lo), and 
the fact that sg is independent of time, leads to the final 
form for the local volume average of the accumulation 
term 

((,c,),~) = s&c&~. (15) 

The second term in equation (12) can be expressed as 

<@c,)~V.~(v$‘~)) = (~c,)~(V*(v,r~p)) (16) 

and in order to interchange integration and differ- 
entiation we make use of the averaging theorem [33] 
to express the superficial average of the convective 
flux in the form 

(Pc,)p(V’(vgTB)) 

[ 

1 
=(Pc,)@ V*<v,T&+ _tr 

s 
nBO *(VP TB) dA 

%r 1 . (17) 

We assume that the b-o interface is impermeable so 
that this result reduces to 

and we are ready to move on to the conduction term 
on the right hand side of equation (12). Use of the 
averaging theorem leads directly to 

(V.(kBVTD)) = V*(ksVT,)+ f 
s 

ns,, - k,V dA 
A#0 

(19) 

and substitution of equations (15), (18) and (19) into 
equation (12) provides the following form of the 
superficial averaged thermal energy equation 

nBG - k@VT, dA. (20) 

At this point it is important to note that we have 
imposed no length-scale constraints on the volume 
averaged transport equation, and that the only sim- 
plification we have used in deriving this result from 
equation (1) is the assumption that the variation of 
physical properties could be ignored within the aver- 
aging volume. 

The traditional representation of the convective flux 
is given by [34] 

<vpTa> = sa<vB>‘<T~>’ + (faTP> (21) 

in which 5, and Ffi are the spatial deviation velocity 
and temperature defined by the following decompo- 
sitions 

vg = (v,>J + 5, (22a) 

T, = (Ta)B+FD. (22b) 

Use of equation (21) would require the imposition of 
length-scale constraints [29], and we need to avoid 
this in order to develop a transport equation that is 
valid within the boundary region between the o-region 
and the q-region. To avoid imposing length-scale con- 
straints, we define an excess dispersive flux according 
to 

<vJo>ex = (vBTB)-EB(vB)~(TB)~-((B~~~s) 
(23) 

with the idea that 

(v~T~)~~ = 0 in homogeneous regions. (24) 

Once again we note that we will use the phrase, ‘homo- 
geneous o-region and homogeneous q-region’ to 
describe those portions of the w and q-regions that are 
not influenced by the rapid changes in structure that 
occur in the boundary region. 

Use of equation (23) in equation (20) leads to a 
form that contains the traditional convective and dis- 
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spatial deviations. We attack this area integral by first 
noting that the averaging theorem provides 

(28) 

and that this allows us to write 

1 
- 

s y Ap 
nB,( Ts)BI, dA = - ( TB)BVs,. (29) 

n 

Here it is understood that averaged quantities located 
outside an integral are evaluated at the centroid. Use 
of this result with equation (27) leads to the following 
expression for the conductive transport 

Fig. 3. Position vectors associated with the averaging volume. +$ 
s 

naOU’a-(Ts>Blx) dA . (30) 
AJO 1 

At this point we can make use of the decomposition 
given by equation (22b) in order to express this flux 

persive transport terms in addition to the excess dis- in terms of the traditional form [32] plus a non-local 
persion. term 

+ (w,)aV * O,JT,J +,(Pc,W * (v,T~)ex, 
Y 

non-locald~spersion 

= 8. (kpVTB) + f 
s 

nsc * k,VTp dA. (25) 
%“o 

Here we have identified (pc,),V * (v, TO),, as a non- 
local term since it involves, indirectly, values of (T# 
that are not associated with the centroid of the aver- 
aging volume illustrated in Fig. 3. 

Turning our attention to the conductive transport 
term on the right hand side of equation (25), we ignore 
variations of kB within the averaging volume and make 
use of the averaging theorem to obtain 

(kpVTp) = k, 
1 

E,~V(T~)‘+ -y 
s 

nsb Tp dA 
4% 

n,,,((Tg)B-(TB)BIx)dA . ,I (31) v non-localconduction 
The last term on the right hand side is identified as a 
non-local term since it involves values of (T8)8 that 
are evaluated at points within the averaging volume 
that are not located at the centroid. 

Substitution of equation (31) into equation (25) 
yields a general form for the B-phase transport equa- 
tion given by 

/?-phase 

We then employ equation (10) in order to express 
this result in terms of the preferred intrinsic average 

[( 

1 _ 
temperature =V* k, ~~i’(T/,)‘+-q 

s 

nsg Tfi d.4 

40 

(k,VT,) = k, E~V(T~~)~+(TB)~V&B +$ s nd<T&B-(T&BIx)dA 
4” )I 

The area integral in this result represents the last 
+$ 

.I 
ngo - k@VT, dA. (32) 

d. 
obstacle in our route to a volume average transport 

1--o’” 

equation that contains only average quantities and The procedure leading to the p-phase transport equa- 
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tion can be repeated for the u-phase beginning with 
equation (4), and the result is given by 

a-phase 

+f 
s 

n,+4<TC)“-(TO)“I,) dA 
48 )I 

nCB * k,V T, dA. (33) 

The interfacial flux terms in equations (32) and (33) 
are equal and opposite, and they will cancel if these 
two transport equal:ions can be added to obtain a one- 
equation model. This requires that the condition of 
local thermal equilibrium be valid [35-371 and we will 
consider that special case in subsequent paragraphs. 

In homogeneous regions, the route to closed forms 
of equations (32) a.nd (33) is reasonably well under- 
stood [25-321; however, we need closed forms that 
are valid in the boundary region and this requires 
some judgment that is based on our knowledge of the 
spatial deviation temperatures. This motivates our use 
of the decomposition given by equation (22b) in order 
to express the interfacial flux in terms of both ( Ts)p 
and Tfl so that equation (32) takes the form 

b-phase 

dW,)B q + (PC,)BV.(&B(VB)‘(T~)‘) 

+ (pcJaV * <VJp) + ,@&V - <v&L, 
non-localdispersion 

(34) 

The analogous form of the a-phase transport equation 
is given by 

o-phase 

%T,Y 
s&cp)s - at 

=V* k, E,V(T,)‘+$ 
[( s 

n,,B Tg dA 
48 

(35) 

The forms of equations (34) and (35) that are valid in 
the homogeneous o and n-regions are already available 
to us [25-321, and our objective at this point is to 
develop the forms that are valid everywhere in the 
system illustrated in Fig. 1. 

The functional dependence of i;p and F0 will be very 
complex in the boundary region, and in order to gain 
some insight into the nature of the functional depen- 
dence, we draw upon previous studies of the two- 
equation model [26-28, 30, 311 in which the spatial 
deviations are expressed as 

Ffl = bsa.V(T,)B+b,,.V(T,)“-s,((T,)B-(T~)b) 

(364 

To = b,B.V(TB)B+b,,.V<T,)u+S,((T,)u-_(TB)P). 

(36h) 

It is important to keep in mind that these rep- 
resentations are only valid in the homogeneous w- 
region. In order to understand how to construct the 
form of the generalized b-phase transport equation, 
we substitute equation (36a) into the interfacial flux 
term in equation (34) and note that one of the terms 
that will be produced is given by 

1 
-[ ngC*kSVTPdA 
y AP 0 

1 =-- 
s y % 

ns~.kaV[ss(<TB)B-(T,)“)ldA+... 
0 

(37) 

This, in turn, will lead to 
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1 =_- 
I r AP 

na~.kkp(V~p)((T~)~-_(T,)~)dA 
D 

1 
- -[ ngU*kgsgV(Tp)BdA 

r AD r 

+f 
s 

nsO - kBsaV( T,)” dA +. 
AP.7 

(38) 

which illustrates the presence of a classical heat exch- 
ange term that is proportional to ( Ta)B- (T,)“, along 
with convective-like terms that are proportional to 
V( TB)B and V( T,)“. We can express the p-phase con- 
vective-like transport as 

1 
- 

s Y- % 
n,, *k,s,V(T,)BdA 

d 

n,, * sBV(T,# dA 1 (39) 

in which txs is the thermal diffusivity for the p-phase. 
We now define a ‘velocity’ according to 

npO * sFV( Tp)@ dA 1 
= (~c,)pV’(u;g(T#‘). (40) 

Here ubp is only one of the velocities that will appear 
in equation (34) on the basis of the representation 
given by equation (36a). It should be clear that uia 
will undergo significant variations in the boundary 
region ; however, in the homogeneous w-region this 
velocity will be essentially constant. If one explores all 
the possibilities associated with the representation for 
Fp, one is motivated to express the generalized thermal 
energy transport equation for the P-phase as 

Generalized /?-phase transport equation 

a< TpY 
E&9(PC,)p at + (Pc,)PV’(+LxT2) 

- (PC&V ‘(u,,( Tp>‘? - (P&V %~(T~)7 

= V~(K;p~V(T,)B+K&~V(T,)c) 

-d4(Ts>B-(TcrY’). (41) 

In dealing with the conductive and dispersive trans- 
port, we have followed the nomenclature used by 
Quintard and Whitaker [30] with the exception that 
we have added an asterisk in order to indicate that 
these terms represent both conduction and convection. 
This is consistent with previous studies [29], and it is 
needed to clearly distinguish the /?-phase transport 
process from the c-phase transport process that does 
not contain any convective or dispersive transport. 
The nomenclature used for the ‘velocity-like’ terms 

differs slightly from that employed by Quintard et al. 
[3 l] and the correspondence is given by 

this work Quintard et al. 
(PcJ&a %8 
(Pc,)&a % 

One can repeat the line of thought leading to equation 
(41) in order to develop the analogous transport equa- 
tion for the a-phase. 

Generalized o-phase transport equation 

XT,)” 
EC(PcLJ0 __ 

at 
- (PQ,V *h+<TedB) 

+K,,.V(T,)“)-a,h((T,)“-(Tg)8). (42) 

The correspondence between the velocities used in this 
expression and those used by Quintard et al. [31] is 
given by 

this work Quintard et al. 
(PcJC% % 
(PcJoFm US, 

It is important to keep in mind that the coefficients 
that appear in equations (41) and (42) will undergo 
rapid variations in the boundary region, and their func- 
tional dependence in that region is not well under- 
stood. For example, in the boundary region the dis- 
persion tensor, KFp, may depend on V(TB)B, and the 
velocity coefficient, ugO, may depend on ( Ts)@-- CT,)“, 
while in the homogeneous w and q-regions these 
coefficients will be well behaved and predictable 
(either by theory or experiment). Outside ofthe bound- 
ary region, the non-local dispersion is zero, while inside 
of the boundary region the non-local dispersion is dis- 
tributed among the terms in equation (41) in an 
unknown manner and the coefficients can only be 
determined by laboratory or numerical experiments. 
It is important to keep in mind that the derivation of 
equations (34) and (35) is quite rigorous and one 
should think of equations (41) and (42) as correct by 
de$nition, i.e. the values and functional dependence of 
the coefficients in those equations are such that the 
volume average temperatures predicted by equations 
(41) and (42) are identical to the true values. This is 
an acceptable point of view in terms of the theoretical 
analysis ; however, jump conditions generally require 
experimental measurements to complete the closure. 
If the functional dependence of the coefficients is 
unclear or exceedingly complex, the experimental part 
of this problem will be difficult to accomplish. 

2. DEVELOPMENT OF THE FLUX JUMP 
CONDITIONS 

Given the generalized transport equations for the 
/I and a-phases, we are ready to develop the jump 
conditions. The coefficients in equations (41) and (42) 
undergo extremely rapid variations in the bouna’ary 
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boundary region 

UN 
- boundary region * 

wq boundary CIS~ boundary 
Fig. 4.. Temperature profiles in the boundary region (a) K& + K& > k, ; (b) K$p + K$ < .$. 

region, in the same way that the stress undergoes 
extremely rapid variations in the neighborhood of a 
phase interface [38]. To avoid the difficulty associated 
with these rapid variations, we will apply the transport 
equations that are valid in the homogeneous parts of 
the w and q-regions to the entire space occupied by 
the w and v]-regions. For example, this means that the 
computed values of (T,)! and ( Ta)t in the boundary 
region will not be equal to the value of (T,# that 
would be determined by equation (41). We have indi- 
cated this situation in Fig. 4 where temperature pro- 
files are illustrated for two cases, K,* + K$fl > k, and 
K& + K& < kfl. It is important to understand that the 
profiles for (TB)$ and (T,){ are not extrapolations, 
but are solutions to the transport equations that are 
valid in the homogeneous w and q-regions and applied 
everywhere. Since the true volume average tem- 
perature will undoubtedly be a continuous function 
of position [29, 3911, we will require that (Ta)t and 
( TB){ form a continuous profile as indicated in Fig 4, 
and we will construct a flux jump condition at the w- 
? boundary which requires that equations (41) and 
(42) be satisfied 011 the average. 

We begin by listing the equations that are valid in 
the homogeneous ~3 and q-regions and the boundary 
conditions for the temperature and velocity. 

o-region 
p-phase transport equation 

QJAPCJB y + (~cp)~V-(<vp),<T& 

- (pcJpV @pw< T,)!) - @cp),vV -(usma< To)3 

= V*(K,*,;V(7’,X+K&~ *V(T,X) 

- (aJO,((Tg)!, -- (T,X) (43) 

a-phase transport equation 

KTLrX 
&JJ(PCp), ~ at - (~c,)oV~(uogo(T~)!) 

- (~c,),V@mw<T,)3 =V-Fo,, *V<T,X 

+K,,,.V(T,)~)-(a,b),((T,)::-(Tg)~) (4) 

boundary conditions 

B.C. 1 ( TB)t = (TO){ at the 0-q boundary 

(45) 

B.C.2 no condition on (T,): at the O.P~ boundary 

(46) 

B.C.3 (v~)~ = (v,),, at the OPT boundary 

(47) 

q-region 
/?-phase transport equation 

(Pcp)B y + (~c,)~v*((v,),<T,):) 

= V %V( TO):) (48) 

a-phase transport equation 
no homogeneous o-phase transport equation in the 

q-region. 

The length-scale constraints that must be satisfied in 
order that equations (43) and (44) are valid in the 
homogeneous w-region are documented elsewhere 
[25-321; however, the length-scale constraints associ- 
ated with equation (48) are not so well known and are 
discussed in the following paragraphs. 
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2.1. Homogeneous q-region 
It is important to note that the energy equation in 

the homogeneous q-region has exactly the same form 
as the original point equation given by equation (1). 
This is based on the approximation that the local 
volume averaged values in the homogeneous q-region 
are equal to the corresponding point values, i.e. 

in the homogeneous q-region. (49) 

The justification of this result is given by Ochoa-Tapia 
and Whitaker [I, 21 who showed that average and 
point values in the homogeneous q-region are related 
by 

($B)lX = ~BIx+~(YBYB):VVl/lsl,+.,. (50) 

and this means that equation (49) is valid whenever 

<YsYa> 1 VW, K *p (51) 

For example, if the temperature in the homogeneous 
q-region is a linear function of position, the restriction 
given by equation (51) is automatically satisfied and 
we conclude from equation (49) that 

<To>’ = CT& = TB, in the homogeneous q-region. 

(52) 

Here it is understood that the average and the point 
temperatures are evaluated at the same position. 

In the process of extracting equation (48) from 
equation (41), we have made use of 

(vBTB) = vsTs in the homogeneous r-region 

(53) 

in order to conclude that there is no dispersion in the 
homogeneous q-region. A little thought will indicate 
that (yays) = O(r$ for a spherical averaging volume, 
and this means that the constraint given by equation 
(5 1) takes the form 

riVV*, << *a. (54) 

We can make use of the estimates given by Ochoa- 
Tapia and Whitaker [l, 21 

(55) 

along with equation (54) to conclude that the con- 
dition indicated by equation (49) is valid whenever 
the following length-scale constraint is satisfied. 

r: Atia << 1 -- 
&L* +B 

, in the homgeneous q-region 

(56) 

Here we note that when $a is a linear function of 
position, the characteristic distance L,, must be set 
equal to infinity in order to be consistent with the 
convention used in equation (55). If $B is a non-linear 
function of position, and the characteristic lengths 
associated with i/jP are not large compared to rO, the 
constraint given by equation (56) may be difficult to 
satisfy. Before moving on to the jump condition based 
on equations (41) through (48), it is important to 
remark that the length-scale constraints associated 
with tifl are applied only in the homogeneous q-region 
and that no length-scale constraints have been 
imposed on the generalized energy transport equa- 
tions in the boundary region. 

2.2. Jump condition 
The development of the jump conditions for the /I 

and a-phase transport equations is quite complicated 
and is given in the appendix. The procedure follows 
that used in the derivation of interfacial jump con- 
ditions [38, 401, and the objective is to obtain con- 
ditions that will require that equations (41) and (42) 
are satisfied on the average in the boundary region. In 
the appendix we show that the jump condition for the 
p-phase is given by : 

Jump condition for the B-phase 

I -(KB*B~.V~(TB)B+K~~..V~(T~)~)~, 
Y 

excem surface convective and 
conductivetransport 

= nw;(SV<T’>F)- @h),((T~X-<T,X) (57) 
Y 

exceSS surface Ileaf exchange 

while that for the a-phase takes the form : 

Jump condition for the o-phase 
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A key term in both these jump conditions is the excess 
surface heat exchange. The coefficient, (a,h),, has the 
units of a traditional heat transfer coefficient, and it 
is a measure of the rate of heat exchange between the 
P-phase and the a-phase in the neighborhood of the (o- 
n boundary. We will identify this coefficient as 

(a$), = h,, (59) 

with the idea tha.t it represents the heat exchange 
between the /l and o-phases in the boundary region. 

Purely on the basis of intuition, we will retain the 
excess surface heal exchange in both equation (57) and 
in equation (58), but we will discard all the remaining 
excess surface terms along with the normal flux of the 
convective-like terms. Under these circumstances our 
two jump conditions can be expressed in the form 

= n,,.(ks~(Tg)~)-ha,((T,)~-(T,)~) 

at the c.+q boundary (60) 

no,, *(KS,, *V<T,>lk+K,,*V<T,)) 

= hSb(( Tp)t - ( To):) at the ~9 boundary. (61) 

Here we have use’d the fact that the volume averaged 
temperatures are continuous, thus the surface tem- 
peratures are specified according to 

CT&!’ = <T,)fj = (T&t at the ~1 boundary 

(62) 

<To): = <T,X at the ~-4 boundary. (63) 

From equations (60) and (61) we see that the excess 
surface heat exchange term controls how the heat flux 
between the w and q-regions is distributed between 
the /I and o-phases. This means that a complete under- 
standing of the heat flux boundary conditions associ- 
ated with the two-equation model requires the knowl- 
edge of the boundary heat transfer coefficient, h,,. 
Considerable information is available concerning the 
term a,h and therefore the heat transfer coefficient, h 
[25, 28, 31, 414.61; however, it would appear that 
very little is known concerning h,. It seems likely that 
h and h,, are the s,ame order of magnitude, but detailed 
studies of the flux jump conditions given by equations 
(60) and (61) are required in order to develop a com- 
plete understanding of the boundary heat transfer 
coefficient, h,,. 

2.3. Local gradient equilibrium 
Quintard and Whitaker [37] have suggested that the 

approximation indicated by 

V<T,J; = V<T,X (64) 

may be valid even when the condition of local thermal 
equilibrium is not satisfied, i.e. (TB)t # (TO):. The 
restrictions [47] associated with the assumption given 
by equation (64) are easy to identify ; however, the 
constraints associated with local gradient equilibrium 
still need to be developed and verified. Even though 
the constraints are not yet available, equation (64) 
represents a popular simplification and when used 
with equations (43) through (48) and equations (60) 
and (61) it leads to the following form of our heat 
transfer problem 

o-region 
p-phase transport equation 

(XT,% 
e&%J(Pc,)B ~ at + (~c,)~V*((v,&(Tfi)!) 

- (PC&V * Ku,, + ysmKT,d~l 

=v.(K,*,.V(T,)~)-(a,h),((TB)~-(T,)~) (654 

a-phase transport equation 

%T,X 
e,&cp)o ~ at -(PC&V - [km +u.dVo>ZJ = 

v%,~V(TX) - WQ,~<T~X- CT&!) WI 

conditions at the wry boundary 

B.C.1 (T&t = (T& (65~) 

B.C.2 n,,,, -(K&, - V( T,)!) 

=n o,.(k,V(T,)fl)-h,,((T,)~-(T,)~) (654 

B.C.3 n,;(K,,*V(T,X) = h~,(<T&!-(T,X) 

(65e) 

B.C.4 (v~)~ = (v,), at the c+rl boundary. 

(650 

q-region 
b-phase transport equation 

%T/l>tl 
(PC& a* ___ + (PC&V *(<~&,<TB)!) 

= V *(k,V<T,)fl) (65g) 

Here we have simplified the nomenclature by use of 
the following representations 

K& = K&aw + Y&o (66a) 
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Km = K,, + Km. (66b) 

2.4. Local thermal equilibrium 
Local thermal equilibrium is characterized by the 

approximation 

(Ta>! = <T,)I: = (r> (67) 

and the constraints associated with this condition have 
been considered in depth [35-371. When the condition 
of local thermal equilibrium is imposed on equations 
(65) we obtain 

w-region 

[&gw(PCp)B+&ga(PC~),I y + (Pc,)~v*((v/AJ(T>> 

= V * (Kz * V( 7’)) (68a) 

boundary conditions 

B.C. 1 (T) = ( Ta){ at the c+q boundary 

(68b) 

B.C.2 nwq *(K$ * V( T’)) = notl *(k,V( Ta){) 

at the ~YI boundary (68~) 

B.C.3 (v~)~ = (v,), at the w-q boundary. 

(68d) 

n-region 
p-phase transport equation 

%T,X 
WB at ~ + (~cphv ‘((viMT,)$ 

= V *(ksV( T,)$). (68e) 

In this representation of the heat transfer problem we 
have combined the thermal dispersion tensors accord- 
ing to 

KZ = K&w + Kfw + K,, + K,, (69) 

and we have discarded the convective-like terms on 
the basis of the work of Quintard and Whitaker [30]. 

3. CONCLUSIONS 

In this work we have developed the flux jump con- 
ditions between a porous medium and a homogeneous 
fluid when the condition of local thermal equilibrium 
is not valid. Under these circumstances, separate 
transport equations are required for each phase. The 
jump conditions at the boundary between the porous 
medium and the homogeneous fluid contain an excess 
surface heat exchange term that controls the way in 
which the total flux is distributed between the two 
phases. Either careful experimental studies or detailed 
numerical experiments are needed to determine the 
excess surface heat transfer coefficient. As an estimate, 
h,, can be equated to the traditional heat transfer 
coefficient for flow in porous media, and values of h 

are available from a variety of sources [25, 3 1, 37,41, 
42, 45, 461. 
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APPENDIX 

We begin the development of the energy flux condition, or the surface energy transport equation, with the generalized 
volume averaged energy equation for the B-phase written in the form 

= V.(K&*V(T,)B+Kf;b*V(T,)“)--a,h((T,)B-(T,)”) (Al) 

It is convenient to use an integral statement of this result that is comparable to that used in the development of jump 
conditions at phase interfaces [38,40]. To this end, we let V,(t) be a volume bounded by a surface dm(t) which has a speed 
of displacement [38] given by (v#)@*n where II is the outwardly directed unit normal vector associated with the surface 
d,(t). This volume is illustrated in Fig. Al, and in terms of Y,(t) the integral statement of equation (Al) is given by 
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Fig Al. Large-scale volume. 

d 
dr s 

(s~(~c,)aU~>9 dv- 
s 

n((pc,)aup~<Ta>‘) dA - 
s 

n. ((Pc,),u,,(~~,)“) dA 
Y*(I) .d_(0 .d_M 

EC s n.(K~~.V(T,)B+K86.V(T,)“)dA- 
s 

a,h(<i”p>B-<T,>“)dV. (A2) 
.d%(O Y 1_ (0 

The portion of Y,(t) that lies in the o-region will be designated by V,(t) while the part that lies in the q-region will be 
identified by V,(t). It follows that 

V,(r) = v,(t)+ V,(r) 

The form of equation (Al) that is valid in the homogeneous o-region is given by 
o-region 

(A3) 

= V * (K&u * V( To>; + K&o .V(T,)~)-(a,h),((Tg)~-_(T,)~) (A4) 

while for the homogeneous n-region we find 
q-region 

In order to develop the energy jump condition, we need to integrate equations (A4) and (A5) over V,(t) and V,(t), 
respectively, and then subtract those two integral equations from equation (A2). In this manner we will obtain a jump 
condition that can be used with equations (A4) and (A5) to produce a solution to the energy transport process that will 
satisfy the integral given by equation (A2), i.e. equation (Al) will be satisfied on the average. We can make use of the general 
transport theorem [48] to express the integral of equation (A4) as 

d 
dt s 

(a+&Q~<T&) dV+ nru7. (&~~(Pc,)~(vs>~(Ts>~) dA - “w * ((P&7%%‘! (T,d!+ (~c,)p,cm<ToX) dA 
V,(O s U’) 

_ “co, * ((w,)&w<T+d~ + (~c,),u,,,<T,):) dA 

_ I (a,h),((Ts>fl,-(T,)~)dV 
v,w 

while the integral of equation (A5) takes a somewhat simpler form given by 

(‘46) 

(A7) 
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%l J % 
Fig. A2. Unit vectors. 

The unit normal vectors contained in these results are identified in Fig. A2, and one should be careful to note that the speed 
of displacement of the surface, A,,(t) = A,,(t), is zero for the system illustrated in Fig. Al. 

Before subtracting equations (A6) and (A7) from equation (A2) in order to develop the jump condition, we should define 
the excess surface thS:rmal energy according to 

Excess surface thermal energy 

Here we note that the term on the left hand side represents all the thermal energy contained in the volume V,(t). The first 
two terms on the right hand side represent the thermal energy contained in V,(t) as determined by equations (A4) and (A5) 
and since these equations are not valid in the boundary region the first two terms on the right hand side of equation (A8) 
will not necessarily be equal to the term on the left hand side. Inclusion of the excess surface thermal energy in the jump 
condition will assure us that the total time rate of change of thermal energy will be given correctly by the solution of 
equations (A4) and (A5). 

Equation (A8) is the preferred representation of an excess function; however, sometimes it is convenient to use the 
alternate form given by 

Excess surface thermal energy 

d 
Z s v,“(r) 

(sP(pc,)&“s>B --Ero(P&V&) dV+ ; 
I v,(r) 

(sa@c,)a(TB>B-((pc,)B(TB)~)dV= 2 
s 

(PC,)P,VB>! dv. 
A_(f) 

(A9) 

When we subtract equations (A6) and (A7) from equation (A2) and make use of the definition of the excess surface thermal 
energy given by equation (A8), we obtain 

- s n, * [((p~,)p~~<T,>~ - (~c,)p,,<T,>t) + ((~c&u,dT~>” - (~dmow(TuXN ~1x4 
A,“(0 

_ s Q, * K(~cphv(Ts>~ -0) + (@cd,u,AT~Y -0)l dA + s nor, * ((~cp),u,pco(T,)i+ (~c,),u,,(ToX) dA 
A,@) &Jo 

= s ~~.[(K~~.V(TB)~+K~.V<T,)“)-_(K~~~.V(TB)~+K~~~.V(T,)~)I~A 
40) 

+ I A (,,~,.[(KH,.V<TB>~+K~~.V(T~>“)-S~(T,):I~A- ~,.t(K~~“Bw.V(T~)~+K~~~(T,~)-k,V<T,)~IdA 
* s A&) 

- s [a”h((T8>8-(T,)“)-(a,h),((TB>&-(T,)~)ldV- s [avh((TB)B-(T,)“)-O]dV. (AlO) 
v,“(t) v,(r) 

Here we have used strategically placed zeros in order to clearly identify those groups of terms that have the form indicated 
by the left hand side of equation (A9) and can therefore be represented in terms of excess surface functions. We begin with 
the convective-like terms and define the surface excess transport as 
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Excess surface convective-like transport 

+ s ~‘[((~c,),~,,(T,)~--~)+((Pc~)BuB~(T~)~-~)I~A. (All) 
qo 

The conductive transport terms in equation (AlO) naturally lead to the definition 

Excess surface conductive transport 

n,.(K~~;V,(Tg)fl+K~~.V~(T,)S)da 

+ s 9,‘[(K~~.V(T,)B+K~~bV(T,)“)-(ksV(Tg)9)JdA. (A12) 
A,@) 

Finally we define the excess surface heat exchange according to 

Excess surface heat exchange 

I 
(a,&(<TB>!-<T,>Z) dA = {[(~“h,(<rs>~-(T,)“)l-[(a,h),((T~>~-<T,>I)l} dV 

~w,v) 

+ ([(a”h)((Ta>8-(T,)“)1-[Ol}dV. (A13) 

With these definitions the integral form of the jump condition can be expressed as 

x ~~.(K~~~.VV,(T,)~+K~~.V,(T,)S)~U- s (a,h),((TB)I-(T,)J)dA. (A14) 
%,&Q 

We can now use the surface transport theorem [40] and the surface divergence theorem [49] to place all the terms in this 
integral equation under the same integral sign and thus extract the differential form of the jump condition. This can be 
expressed in the form 

Results can be simplified by imposing the continuity conditions 

B.C.1 (Tp)i = (To): at the ~-9 boundary 

B.C.2 (vp)” = <v#), at the u+q boundary 

(Al6) 

(A17) 

since this eliminates the convective transport term from equation (A15) and we obtain 
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Jump condition for the B-phase 

The analysis for the c-phase will be identical to that which led us to equation (A18) and we simply list the result as 

Jump condition for the u-phase 

Clearly these two jump conditions, in their general form, are very complicated ; however, it seems likely that surface transport 
and the convective-like flux can be neglected in order to obtain useful forms of these two results. 


