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Abstract—The heat transfer conditions that apply at the boundary between a porous medium and a
homogeneous fluid are developed as flux jump conditions based on the non-local form of the volume
averaged thermal energy equations for both the fluid and the solid. These jump conditions take the form
of surface transport equations that contain excess surface accumulation, convection, and conduction, in
addition to a term representing the excess surface heat exchange. It would appear that this latter term
controls the manner in which the flux from the porous medium to the homogeneous fluid is distributed
between the solid and fluid phases that make up the porous medium. © 1997 Elsevier Science Ltd. All
rights reserved.

1. INTRODUCTION

The system under consideration is illustrated in Fig.
1 where we have identified the porous medium as the
w-region and the homogeneous fluid as the y-region.
The governing equations and interfacial conditions
that describe the heat transfer process in this system
are given by

oT,
(Pe)s =3, +(0c)sV (¥ Ty)

=V -(ksVTy)

Ty =T,

in the f-phase (1)

B.C.1 at the f-o interface @

B.C2 —ny, kVT; = —ny, k,VT,

at the f-o interface (3)
a7, .
(pcp)qw =V-(k,VT,) intheo-phase. (4)

The analysis of the fluid mechanical problem is
described elsewhere [1-3], and we will make use of
those results without discussion.

The fluid flow and heat transfer processes that occur
in the system shown in Fig. 1 are comparable to what
one finds in packed bed catalytic reactors [4-8], in
processes involving transpiration cooling [9-11], in
drying processes [12] and in a variety of other tech-
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nological applications [13-18]. The heat transfer pro-
cess associated with the boundary between the @ and
y-regions has been analyzed by Prat [19-21] and by
Sahraoui and Kaviany [22-24] in terms of numerical
experiments. Both studies were restricted to the one-
equation model of heat transfer processes, and in this
work we will deal primarily with the rwo-equation
model [17, 25-31].

When several simplifications are made in the flux
Jjump conditions, one obtains the following two results

Flux conditions at the w-n boundary
B-phase

n,,, (K&, - V{TpE) = n,,, (ks V<Tp>h)
—hﬂa(<Tﬁ>g)_<Ta>ZJ) (5)

o-phase

0, * (Koo VST, 5) = hgo (KT —<T,0%).  (6)

Here K}, represents the thermal dispersion tensor for
the f-phase in the w-region, while K, represents the
effective thermal conductivity tensor for the solid
phase. The last term in both these results represents
the excess surface heat exchange between the § and o-
phases, and it is this term that controls how the flux
at the w—n boundary is distributed between the fluid
and solid phases. Equations (5) and (6) are obtained
on the basis of several simplifications, and probably
the most important of these is the imposition of the

2691



2692 J. A. OCHOA-TAPIA and S. WHITAKER
NOMENCLATURE

a, = A4,/?", interfacial area per unit ng, = ~n,, unit normal vector directed
volume [m~'] from the f-phase toward the

Ag, = A, area of the f~o interface o-phase
contained in the averaging volume n, outwardly directed unit normal
[m? vector for the w-region

by, vector field that maps V{T})” onto n, outwardly directed unit normal for
Ty [m] the y-region

bg, vector field that maps V{7,)° onto n,, = —n,,, unit normal vector directed
Ty [m] from the w-region toward the

b, vector field that maps V{T,)* onto y-region
T, [m] P =l—n,,n,,, projection tensor

b, vector field that maps V{T,)° onto Ds pressure in the S-phase (N m~7]

T, [m] ro radius of the averaging volume [m)]

Cp heat capacity [kcal kg=' K~'] g scalar field that maps (T,>° —(T)*

(pcp)s  volumetric heat capacity of the onto T
B-phase [kcalm~> K ] Sq scalar field that maps <7T,»" —{T;»*

(pc,),  volumetric heat capacity of the onto T,
o-phase [kcal m~? K Y] T, temperature in the f-phase [K]

(pco)ps  excess ff-phase surface heat capacity {Ty)* intrinsic average temperature in the
[keal m 2K ~] B-phase [K]

(pcp)os  excess o-phase surface heat capacity Ty = Ty— (Ty)”, spatial deviation for
[kecalm~2K ) the B-phase [K]

g gravity vector [m?s™] {Ty>6 intrinsic average temperature in the

h traditional heat transfer coefficient B-phase determined by the f-phase
[kcalm=3s~' K] thermal energy equation valid in

hg, boundary region heat transfer the homogeneous w-region [K]
coefficient [kcalm™3s ' K ] {T>¢ intrinsic average temperature in the

ks thermal conductivity of the f-phase f-phase determined by the S-phase
[kcalm=2s7 1KY thermal energy equation valid in

k, thermal conductivity of the g-phase the homogeneous #-region [K]
[kealm=—2s~' K] T, temperature in the o-phase [K)

K% total f-phase thermal dispersivity {T,»* intrinsic average temperature in the
tensor associated with V{T},)* o-phase [K]

[kealm™2s ' K] T, =T,—<{T,)", spatial deviation for

K, total f-phase thermal dispersivity the g-phase [K]
tensor associated with V{T,)’ (T,>, intrinsic average temperature in the
[keal m~?s7' K] B-phase determined by the g-phase

K.z o-phase effective thermal thermal energy equation valid in
conductivity tensor associated with the homogeneous w-region [K]
V{T;>" [kealm=2s7' K '] {Ts>% intrinsic average temperature of

K., o-phase effective thermal the f-phase at the - boundary [K]
conductivity tensor associated with {(T,>; intrinsic average temperature of the
V{T,>° [kcalm=257' K] o-phase at the oy boundary [K]

K. total f-phase thermal dispersivity Ugs a velocity that represents convective-
tensor associated with V{T;># like transport in the f-phase that is
[kealm2s7' K] associated with (7> [m s™!]

K?... total f-phase thermal dispersivity g, a velocity that represents convective-
tensor associated with V<{T,> like transport in the S-phase that is
[kcalm2s~ 'K associated with (7,,>° [m s~

K0 o-phase effective thermal W,p a velocity that represents convective-
conductivity tensor associated with like transport in the g-phase that is
V{Th [keal m=2s7' K] associated with {7)* [m s™!]

Koo o-phase effective thermal U0 a velocity that represents convective-
conductivity tensor associated with like transport in the S-phase that is
VLT,>% [kealm~2s~' K] associated with (7,)>° [ms™']
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NOMENCLATURE (continued)
\7) velocity in the f-phase [m s™!] &g = V,/¥", porosity or volume fraction
(v superficial average velocity for the - of the f-phase
phase [m s™!] &, =V,/¥", volume fraction of the
vpdP = gv,), intrinsic average velocity o-phase
for the B-phase [m s~} Up viscosity of the B-phase [Ns m 7]
\7 = vg—{vp)P, spatial deviation Ps density of the f-phase [kg m ™3
velocity for the f-phase [m s™'] P density of the o-phase [kg m~?].
{vg>, superficial average velocity fqr the Subscripts
f-phase determined by equations . . . . .
s B identifies a quantity associated with
valid in the homogeneous w-
. 2 the f-phase
region [m s~'] . . . . .
. . o identifies a quantity associated with
{vg», superficial average velocity for the f- the o-phase
phase that is determined by . P . . .
. . po identifies a quantity associated with
equations that are valid in the h nterf
homogeneous y-region {m s™'] the f~o interface . .
. . ® identifies a quantity associated with
{vgys  superficial average velocity of the .
o the w-region
B-phase at the w-# boundary [m s™'] . . . . .
. 3 n identifies a quantity associated with
v averaging volume [m’] the n-resion
Vg volume of the f-phase contained The 7°TCE . . .
o . 3 wn identifies a quantity associated with
within the averaging volume [m’] X
R 3 the w1 region
Y 5 large-scale volume [m’) . . . .
. . ] identifies a surface quantity having
v, volume of the entire w-region . .
s 3 the units of the associated bulk
contained in ¥", [m’] o
. . quantity times length
v, volume of the entire y-region S _—
. . 3 X indicates that a quantity is evaluated
contained in ¥", [m’] . .
. : . at the centroid of the averaging
X position vector locating the centroid
. volume.
of the averaging volume [m]
A position vector locating points in the Superscripts
B-phase relative to the centroid B indicates an intrinsic volume
[m]. averaged quantity associated with the
B-phase
Greek symbols g indicates an intrinsic volume
olg thermal diffusivity for the f-phase averaged quantity associated with the
[m?®s™'] o-phase.

condition of local gradient equilibrium. This condition
suggests that the gradients of (T})% and (T,)?, can
be equated even when the two temperatures are not
equal, i.e. (T A s (T, ; however, we must remind
the reader that the constraints associated with this
condition have not yet been obtained.

In order to analyze the heat transfer process that
takes place in the system illustrated in Fig. 1, we need
to develop volume averaged transport equations that
apply within the w-region and we need to develop
jump conditions that apply at the boundary between
the w-region and the n-region. If we make use of
volume averaged equations in the w-region and point
equations in the n-region, we are confronted with a
mismatch of length scales that can only be overcome
by the use of a variable-sized averaging volume in the
neighborhood of the boundary region. This com-
plication can be avoided if volume averaged equations
can be used in both the w and n-regions, and it is this

approach that we will follow in this paper. This idea
is illustrated in Fig. 2 where we have shown averaging
volumes in the w-region (I), in the boundary region
(I1), and in the n-region (IIf). We will derive the gov-
erning equations that are applicable in the boundary
region, and then indicate the special forms that they
take in the homogeneous w and 5-regions. By ‘homo-
geneous @ and y-regions’, we mean those portions of
the @ and n-regions that are not influenced by the
rapid changes in structure that occur in the boundary
region.

1.1. Volume averaging

The volume averaged forms of the thermal energy
equations for homogeneous regions have been dis-
cussed in considerable detail elsewhere [25-32] ; how-
ever, in this particular study we need equations that
are valid everywhere in the system illustrated in Fig.
1. This means that we must avoid imposing any length-
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1 -region

Fig. 1. Convective heat transfer in a system composed of a porous medium and a homogeneous fluid.

n-region

m

Fig. 2. Averaging volumes.

scale constraints since these will fail in the boundary
region (II) illustrated in Fig. 2. In addition to avoiding
any length-scale constraints, we must also put forth
reasonable representations for the non-local transport
equations that apply in the boundary region, and this
means that the volume averaged forms of equations
(1)~(4) must be considered in some detail. After deriv-

ing generalized energy transport equations that apply
everywhere, we can extract the special forms that
describe the heat transfer processes in the homo-
geneous w and y-regions.

We begin by defining the superficial volume average
of some function y, associated with the f-phase
according to

1
plx = 7J Yp(x+ypdv,. M

Vp(x)

Here Vy(x) is the volume of the p-phase contained
within the spherical averaging volumes that are shown
in Fig. 2, and the position vectors x and y, are ident-
ified in Fig. 3. There we have indicated that x rep-
resents the position vector locating the centroid of the
averaging volume, and that y, represents the position
vector locating points in the f-phase relative to the
centroid. Equation (7) clearly indicates that volume
averaged quantities are associated with the centroid
and that integration is carried out with respect to the
components of y,. In general, we will avoid the precise
nomenclature used in equation (7) and represent the
superficial average of Y,

gy = %f

Vi

YpdV ®

while the intrinsic average is expressed in the form

<w>ﬂ=Viﬂ J Yy dv. )
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Both these averages will be used in our theoretical
development and they are related by

Yp> = egPp)P. 10
The porosity &g is defined explicitly as
&g =Vp/V" an

and we note that iri the boundary region &5 undergoes
significant changes over a distance equivalent to the
radius of the averaging volume, r,, that is illustrated
in Fig. 2.

In terms of the nomenclature illustrated in equation
(8), we express the superficial average of equation (1)
as

oT,
<(pcp)ﬂ—67ﬂ eV -(v,;T,e)> = (V- VT,

(12)

Throughout this development we will ignore vari-
ations of the physical properties within the averaging
volume, and this allows us to express the first term in
equation (12) as

oT, oT,
<(Pcp)s —6_1“3> =(pcp)s <Eﬁ>

We consider the o-phase to be rigid and this allows us
to interchange integration and differentiation in order
to express the accumulation of thermal energy in the

form
0T, KT,
<(PCp)p a_tﬂ> =(pcpls <6tﬂ>'

Use of the relation between the superficial average
and the intrinsic average given by equation (10), and
the fact that &5 is independent of time, leads to the final
form for the local volume average of the accumulation
term

(13)

(14)

KT,

oT,
<(pcp)ﬁa—,”> =ale—5— (19

The second term in equation (12) can be expressed as

<(pcp)ﬁv "[VﬂTﬁ» = (PCp)ﬁ<V '(Vﬂ T/J)> (16)

and in order to interchange integration and differ-
entiation we make use of the averaging theorem [33]
to express the superficial average of the convective
flux in the form

(P%)ﬂ(v “(vg Tﬂ) >
1
=(pcp)s [V v T+ 7[ g, (Vs Tp) dAilo a7

We assume that the f—¢ interface is impermeable so
that this result recluces to

{(pey)pV (vg Tﬂ)> = (pcp)ﬁv (v Ty (18)
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and we are ready to move on to the conduction term

on the right hand side of equation (12). Use of the
averaging theorem leads directly to
1

(V- (kgVTp)) = V< kgVT) + 7‘[ 0y, k;VdA

Agy

19)

and substitution of equations (15), (18) and (19) into
equation (12) provides the following form of the
superficial averaged thermal energy equation

HKTH*
Eﬁ(pcp)ﬁ af>

+ (pCp)ﬁV' <VBT5> =V- <k/;VTﬂ>

convection conduction

accumulation

1
+5 L}u Ny, k,VT,dA.  (20)

L J
Y

interfacial flux

At this point it is important to note that we have
imposed no length-scale constraints on the volume
averaged transport equation, and that the only sim-
plification we have used in deriving this result from
equation (1) is the assumption that the variation of
physical properties could be ignored within the aver-
aging volume.

The traditional representation of the convective flux
is given by [34]

CvpTp> = 5V Y (TP + (¥, T (1)
in which ¥, and T are the spatial deviation velocity
and temperature defined by the following decompo-
sitions

Vo =vp)P +, (22a)

Ty =T+ T, (22b)

Use of equation (21) would require the imposition of
length-scale constraints [29], and we need to avoid
this in order to develop a transport equation that is
valid within the boundary region between the w-region
and the n-region. To avoid imposing length-scale con-
straints, we define an excess dispersive flux according
to

Vg Tpdex = VaTp) — gV Tp)? =<, Ty
(23)
with the idea that
<vﬁ Tﬁ >ex = 0

Once again we note that we will use the phrase, ‘homo-
geneous w-region and homogeneous z-region’ to
describe those portions of the w and #-regions that are
not influenced by the rapid changes in structure that
occur in the boundary region.

Use of equation (23) in equation (20) leads to a
form that contains the traditional convective and dis-

in homogeneous regions. (24)
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X
Fig. 3. Position vectors associated with the averaging volume.

persive transport terms in addition to the excess dis-
persion.

o1 (9 T2 1 (0,7 (ep o CTy)

+(pcy)gV - <y T/i> + (0¢,) 5V * {vpTp)ex

non-local dispersion
1
= V- (k¥ + 7J ng, kVT;dA.  (25)
Aﬂ”

Here we have identified (pc,);V - (¥T})ex as a non-
local term since it involves, indirectly, values of { T;)*
that are not associated with the centroid of the aver-
aging volume illustrated in Fig. 3.

Turning our attention to the conductive transport
term on the right hand side of equation (25), we ignore
variations of k; within the averaging volume and make
use of the averaging theorem to obtain

1

Ag,

ny, T dA} (26)

We then employ equation (10) in order to express
this result in terms of the preferred intrinsic average
temperature

<kgVTp) = ky [SﬂV<Tﬁ>ﬂ+<Tﬂ>ﬂvgﬁ

1
+ 7 L,,,, ng, Ty dA:l 27

The area integral in this result represents the last
obstacle in our route to a volume average transport
equation that contains only average quantities and

J. A. OCHOA-TAPIA and S. WHITAKER

spatial deviations. We attack this area integral by first
noting that the averaging theorem provides

1
| n,da=—ve (28)
-+ JA&, yit B

and that this allows us to write

L f mo Tyl dd = — (TP, (29)
v 5,

Here it is understood that averaged quantities located
outside an integral are evaluated at the centroid. Use
of this result with equation (27) leads to the following
expression for the conductive transport

1
s f nﬂa(rﬂ—<T,,>ﬂ|x)dA} (30)

At this point we can make use of the decomposition
given by equation (22b) in order to express this flux
in terms of the traditional form [32] plus a ron-local
term

1 "
VT = k{sﬂvq,,)u 7[ ng, Ty dA4

Ags

14

. J
Y

1
+—J nﬁos(<Tﬂ>ﬁ—<Tﬁ>ﬂIx)dAj|- (31

non-local conduction

The last term on the right hand side is identified as a
non-local term since it involves values of {7;)* that
are evaluated at points within the averaging volume
that are not located at the centroid.

Substitution of equation (31) into equation (25)
yields a general form for the f-phase transport equa-
tion given by

B-phase

<

t(pey)y ST > (0¥ (s ¥ TP

+(peo)sV - U Tpd> + (p6p)sV Vs Ty

non-local dispersion

1 ~
=V: [kﬁ(ﬁﬁV(Tp>ﬁ+_J‘ l'lp,Tﬂ dA
7 )

1
+ LW 1 (CT3Y =< T 1) dA)]

C -

v
non-local conduction

(32

1
+—’V_JA‘” g, * kﬂVTﬁ d4.

The procedure leading to the f-phase transport equa-
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tion can be repeated for the g-phase beginning with
equation (4), and the result is given by

o-phase

KT,
ot

sn(pcp)a
‘ 1 "
=V | k,| e, VT, >+ 7 n,,7T,dA
Aqﬂ

vy | macry = aa)]

J

—
non-jocal conduction

1
+——J Nk, VT,dA. (33)
v vy

The interfacial flux terms in equations (32) and (33)
are equal and opposite, and they will cancel if these
two transport equarions can be added to obtain a one-
equation model. This requires that the condition of
local thermal equilibrium be valid [35-37] and we will
consider that special case in subsequent paragraphs.

In homogeneous regions, the route to closed forms
of equations (32) and (33) is reasonably well under-
stood [25-32]; however, we need closed forms that
are valid in the boundary region and this requires
some judgment that is based on our knowledge of the
spatial deviation temperatures. This motivates our use
of the decomposition given by equation (22b) in order
to express the interfacial flux in terms of both (7"
and Tﬂ so that equation (32) takes the form

B-phase

I T,H?
eg(pcp)p —<a_;lz_ +(peo)sV (v < Tp)P)

+ (pCp),gV N <V;r fﬂ> + (pcp)ﬂv ) <vﬂ Tﬂ>ex
—

non-local dispersion

=V [k,,(sﬁv<7',,>ﬂ+ %J

1
+ ﬂ g (T (TP ) dA)}

ng, T dA

Bo

J

~v—
non-local conduction

1
+ 7Lh ng, ks V{ T dA4

N J
g

non-local 1eat exchange

1 o
+ 7 JAﬁa nﬂ, M ICﬂV Tﬁ dA. (34)

The analogous form of the o-phase transport equation
is given by
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g-phase

a Ta>a
&, (pcy)e < %

I N
=V |k, e,V<T,,>“+—j n,, T, dd
vz

1
+ 7L 05T, > —<T,>°|,) dA)]

~—
non-local conduction

1
+ — N * kaV< Tn’>a dA4
kV '[AVﬁ ’

J

Y
non-local heat exchange

1 -
+—| mn,k,VT, dA. (35)
~VL¢ B

The forms of equations (34) and (35) that are valid in
the homogeneous w and y-regions are already available
to us [25-32], and our objective at this point is to
develop the forms that are valid everywhere in the
system illustrated in Fig. 1.

The functional dependence of T and T, will be very
complex in the boundary region, and in order to gain
some insight into the nature of the functional depen-
dence, we draw upon previous studies of the two-
equation model [26-28, 30, 31] in which the spatial
deviations are expressed as

Tp = bgs - V<Ty) + by, V(T, )" —54(KTp)* —<T,>7)
(36a)

T‘, = b,,ﬂ 'V<Tﬂ>p+baa * V<Ta>6+sa(<Ta>a - <Tﬁ>ﬂ)
(36b)

It is important to keep in mind that these rep-
resentations are only valid in the homogeneous w-
region. In order to understand how to construct the
form of the generalized p-phase transport equation,
we substitute equation (36a) into the interfacial flux
term in equation (34) and note that one of the terms
that will be produced is given by

1
7 J‘Aﬂd g * kﬂVTﬁ d4

1
- "7L g, - kgVisg((Tp)? —(T,>")]dA+- -

(37

This, in turn, will lead to
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1 .
- L,,” ny, - k,VT,dA

1
= ‘7L ng, *ky(Vsp) (K Tp)" —<T,>°) d4

1
- Lﬁa ny, - kpssV< T, dA4

1
+ _J nﬂa'kBSﬂV<Td>g d4+--- (38)
4 4y,

which illustrates the presence of a classical heat exch-
ange term that is proportional to {T;)# — (T, >, along
with convective-like terms that are proportional to
V{T, l,)‘i and V{T,>’. We can express the -phase con-
vective-like transport as

L L 'kﬂSﬂV(Tﬁ>ﬁ dA
v .

=(pc,)s [3"4 J g, * 55V TP dA} (39)

in which a; is the thermal diffusivity for the f-phase.
We now define a ‘velocity’ according to

o
(Peo)g [7’3 L ng,  5,V<Tp)* dA:|
o

=(pcy) sV "(upp T ). (40)

Here uj, is only one of the velocities that will appear
in equation (34) on the basis of the representation
given by equation (36a). It should be clear that ug,
will undergo significant variations in the boundary
region; however, in the homogeneous w-region this
velocity will be essentially constant. If one explores a//
the possibilities associated with the representation for
T}, one is motivated to express the generalized thermal
energy transport equation for the ff-phase as

Generalized f-phase transport equation

KT,
gs(pcy)p af

+ (pcp) gV (Ve < Tp)P)

—(pcp)pV (g T3>ﬂ) —(pcp)pV - (ug,<T,>")
= V(K - V<T,>* + K%, - VLT, >°)
—ah({Tp)! —<T,)°). (41)

In dealing with the conductive and dispersive trans-
port, we have followed the nomenclature used by
Quintard and Whitaker [30] with the exception that
we have added an asterisk in order to indicate that
these terms represent both conduction and convection.
This is consistent with previous studies [29], and it is
needed to clearly distinguish the B-phase transport
process from the g-phase transport process that does
not contain any convective or dispersive transport.
The nomenclature used for the ‘velocity-like’ terms

J. A. OCHOA-TAPIA and S. WHITAKER

differs slightly from that employed by Quintard et al.
[31] and the correspondence is given by

this work Quintard et al.
(pcy) gugs Ugg
(pep) pugs g,

One can repeat the line of thought leading to equation
(41) in order to develop the analogous transport equa-
tion for the o-phase.

Generalized o-phase transport equation

KT,y
ot
—(pep),V (e, {T, %) =V (Ko V(T})*

+Koo  VCT,07) ~a h({T, )" = {Tp)"). (42)

The correspondence between the velocities used in this
expression and those used by Quintard et al. [31] is
given by

Sa(pcp)rr (pcp)av .(uaB<Tﬂ>ﬁ)

this work Quintard et al.
(p cp)ouoﬂ uaﬁ
(pcp) Uy U,

It is important to keep in mind that the coefficients
that appear in equations (41) and (42) will undergo
rapid variations in the boundary region, and their func-
tional dependence in that region is not well under-
stood. For example, in the boundary region the dis-
persion tensor, K};, may depend on V(Tﬁ>5, and the
velocity coefficient, ug,, may depend on <T,g)” —<LT,>°,
while in the homogeneous w and py-regions these
coeflicients will be well behaved and predictable
(either by theory or experiment). Qutside of the bound-
ary region, the non-local dispersion is zero, while inside
of the boundary region the non-local dispersion is dis-
tributed among the terms in equation (41) in an
unknown manner and the coefficients can only be
determined by laboratory or numerical experiments.
It is important to keep in mind that the derivation of
equations (34) and (35) is quite rigorous and one
should think of equations (41) and (42) as correct by
definition, i.¢. the values and functional dependence of
the coefficients in those equations are such that the
volume average temperatures predicted by equations
(41) and (42) are identical to the true values. This is
an acceptable point of view in terms of the theoretical
analysis ; however, jump conditions generally require
experimental measurements to complete the closure.
If the functional dependence of the coefficients is
unclear or exceedingly complex, the experimental part
of this problem will be difficult to accomplish.

2. DEVELOPMENT OF THE FLUX JUMP
CONDITIONS

Given the generalized transport equations for the
f and o-phases, we are ready.to develop the jump
conditions. The coefficients in equations (41) and (42)
undergo extremely rapid variations in the boundary
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(a (b)

boundary region |~=—

w-n boundary
Fig. 4. Temperature profiles in the boundary region (a) Kj; + K%, > k;; (b) K3+ K%, < k.

region, in the same way that the stress undergoes
extremely rapid variations in the neighborhood of a
phase interface [38]. To avoid the difficulty associated
with these rapid variations, we will apply the transport
equations that are valid in the homogeneous parts of
the @ and 5-regions to the entire space occupied by
the w and n-regions. For example, this means that the
computed values of (T;)>f and {T;>% in the boundary
region will not be equal to the value of {7,)” that
would be determined by equation (41). We have indi-
cated this situation in Fig. 4 where temperature pro-
files are illustrated for two cases, K}; +KJ%, > k; and
K# +KJ < k. Itis important to understand that the
profiles for (T>% and {Ty>f are not extrapolations,
but are solutions to the transport equations that are
valid in the homogeneous w and #-regions and applied
everywhere. Since the true volume average tem-
perature will undoubtedly be a continuous function
of position [29, 39], we will require that (T} and
{T;> form a continuous profile as indicated in Fig 4,
and we will construct a flux jump condition at the w-
n boundary which requires that equations (41) and
(42) be satisfied on the average.

We begin by listing the equations that are valid in
the homogeneous « and #-regions and the boundary
conditions for the temperature and velocity.

w-region
B-phase transport equation

KTy,
Eﬂw(pcp)ﬂ atﬁ

+(pco)sV (VDo T)h)

- (pcp)ﬂv '(uﬂljw< Tﬁ)f}) - (pcp)ﬂv .(“Baw< To’>:))
= V '(KE‘Bw ‘ V< Tﬂ>g) + K;aw : V<Ta>Z))

—(ah)o(KTph—<T.5%) 43)
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— boundary region B

|

|

1
I
b

1_ —

(L)%
(B

-1 boundary

o-phase transport equation

KT,)s
&0 (PCp)s 2

- (pcp)u'v '(uaﬁw< Tﬂ >£)

—(pCp)sV (g0l T 35) =V (Koo VT,
+Kooo ' VT, 00) — (a,h) (KT, 56 —<Tp)k)  (44)
boundary conditions
B.C.1 (Tt =<(T;> atthe o boundary
(45)
B.C.2 no condition on {T,) at the w—# boundary
(46)

B.C.3 <{vg), =<vp),, atthe w— boundary

@7n
n-region
f-phase transport equation
KTpy
(Peols =5, + (pea)sV (¥ 2uCT)h)
=V (kV<Tp))  (48)

g-phase transport equation
no homogeneous o-phase transport equation in the
n-region.

The length-scale constraints that must be satisfied in
order that equations (43) and (44) are valid in the
homogeneous w-region are documented elsewhere
[25-32] ; however, the length-scale constraints associ-
ated with equation (48) are not so well known and are
discussed in the following paragraphs.
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2.1. Homogeneous n-region

It is important to note that the energy equation in
the homogeneous y-region has exactly the same form
as the original point equation given by equation (1).
This is based on the approximation that the local
volume averaged values in the homogeneous #-region
are equal to the corresponding point values, i.e.

Wl = Wpdlx = ¥l

in the homogeneous x-region.  (49)

The justification of this result is given by Ochoa-Tapia
and Whitaker [1, 2] who showed that average and
point values in the homogeneous #-region are related
by

Wpdlx = Yalx+5<Tp¥50 - VVYglx+-- (50)

and this means that equation (49) is valid whenever

<YﬁYﬁ> : VV!/’/i < '///x (51)

For example, if the temperature in the homogeneous
y-region is a linear function of position, the restriction
given by equation (51) is automatically satisfied and
we conclude from equation (49) that

{Ty»" =<T;> =T, inthe homogeneous #-region.
(52)

Here it is understood that the average and the point
temperatures are evaluated at the same position.

In the process of extracting equation (48) from
equation (41), we have made use of

{vsTy> = v4T,; in the homogeneous y-region

(53)

in order to conclude that there is no dispersion in the
homogeneous #-region. A little thought will indicate
that {yzy;> = O(rj) for a spherical averaging volume,
and this means that the constraint given by equation
(51) takes the form

raVVipy < . (54)

We can make use of the estimates given by Ochoa-
Tapia and Whitaker [1, 2]

_o(A%
=02

A (AN Ay
V) = O( Ly ) =0 <Lw1Lw) 3

along with equation (54) to conclude that the con-
dition indicated by equation (49) is valid whenever
the following length-scale constraint is satisfied.

3 Ay

— 1,

in the homgeneous #-region
LyLy Y g

(56
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Here we note that when y; is a linear function of
position, the characteristic distance L,; must be set
equal to infinity in order to be consistent with the
convention used in equation (55). If Y4 is a non-linear
Sfunction of position, and the characteristic lengths
associated with , are not large compared to r,, the
constraint given by equation (56) may be difficult to
satisfy. Before moving on to the jump condition based
on equations (41) through (48), it is important to
remark that the length-scale constraints associated
with i, are applied only in the homogeneous #-region
and that no length-scale constraints have been
imposed on the generalized energy transport equa-
tions in the boundary region.

2.2. Jump condition

The development of the jump conditions for the
and o-phase transport equations is quite complicated
and is given in the appendix. The procedure follows
that used in the derivation of interfacial jump con-
ditions [38, 40], and the objective is to obtain con-
ditions that will require that equations (41) and (42)
are satisfied on the average in the boundary region. In
the appendix we show that the jump condition for the
f-phase is given by :

Jump condition for the f-phase

KTyt
P =50

%/__J

excess surface
accumulation

+ V. [(pep) ps V0L Tp )Y
B (KE‘BS : Vs<Tﬂ>g+ Kgas ¢ Vs<Ta>g)]J

excess surface convective and
conductive transport

- \Vs : [(pcp)Bs(uﬂﬁ)s<Tﬂ>lsg + (pcp)ﬂs(uﬂa)s<Ta>sﬂ]J

excess surface convective-like transport

+ l\lwq '((pcp)ﬂ“b’ﬂw<Tﬂ>g) + (pcp)b’uﬂaw<Ta>ZJ)

normal flux of convective-like transport

+ nwr] : (KEﬁw N V<Tﬂ>gj + K;}‘aw : V< Ta>g))
= oy s V<TI0 — (@B (KTE—(T)3) (5T)

excess surface heat exchange

while that for the o-phase takes the form:

Jump condition for the g-phase

oT,>:
(0p)os Y

excess surface
accumulation

'—Ys ‘ [(Ko'ﬁs ’ Vs<Tﬂ>£+Krm's ° Vs<Ta>g)j]

excess surface conductive transport

_LVS : [(pcp)a's(uzrﬂ)s< Tﬂ>£ + (pcp)n‘s(uav)s<Ta>g]l

excess surface convective-like transport
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+ Ew" * [(pcp)aua'ﬁw< Tﬂ >£) + (pcp)auaam< Ta >Z)J

normal flux of convective-like transport
+ nam ° (Kaﬁm * V<Tﬁ >£x + Kmm; " V< Ta‘>Z))
=(am) (T —<T,)7) (58)
Y

excess surface heat exchange

A key term in both. these jump conditions is the excess
surface heat exchange. The coefficient, (a,h),, has the
units of a traditional heat transfer coefficient, and it
is a measure of the rate of heat exchange between the
B-phase and the g-phase in the neighborhood of the w—
7 boundary. We will identify this coefficient as
(avh)s = hﬂa (59)
with the idea that it represents the heat exchange
between the f§ and g-phases in the boundary region.
Purely on the basis of intuition, we will retain the
excess surface heai exchange in both equation (57) and
in equation (58), but we will discard all the remaining
excess surface terms along with the normal flux of the
convective-like terms. Under these circumstances our
two jump conditions can be expressed in the form

nam '(K;ﬁw : V< Tﬁ>£} + K?Z‘am : V< Ta>‘:o)
= 0, (kg V<Tp ) ~hge (K Tp>h,—< T, %)
at the oy boundary (60)

nwrl '(Kaﬁw : V<Tﬂ>g) + Ko’a’a) * V( Tﬂ>)
= hy,(Tp>E —<(T,>3) atthe w-n boundary. (61)

Here we have used the fact that the volume averaged
temperatures are continuous, thus the surface tem-
peratures are specified according to

(Tt = (Tpdt, = (Tp>E  at the w- boundary
(62)

(T, =<T,»; atthe w—nboundary. (63)
From equations (60) and (61) we see that the excess
surface heat exchange term controls how the heat flux
between the @ and n-regions is distributed between
the § and o-phases. This means that a complete under-
standing of the heat flux boundary conditions associ-
ated with the two-equation model requires the knowl-
edge of the boundary heat transfer coefficient, fj,.
Considerable information is available concerning the
term a,h and therefore the heat transfer coefficient, A
[25, 28, 31, 41-46]; however, it would appear that
very little is known concerning /,. It seems likely that
hand hg, are the same order of magnitude, but detailed
studies of the flux jump conditions given by equations
(60) and (61) are required in order to develop a com-
plete understanding of the boundary heat transfer
coefficient, Ag,.
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2.3. Local gradient equilibrium

Quintard and Whitaker [37] have suggested that the
approximation indicated by

V(TR = VKT, (64)

may be valid even when the condition of local thermal
equilibrium is not satisfied, i.e. <T5>£, #{T,>.. The
restrictions [47] associated with the assumption given
by equation (64) are easy to identify; however, the
constraints associated with local gradient equilibrium
still need to be developed and verified. Even though
the constraints are not yet available, equation (64)
represents a popular simplification and when used
with equations (43) through (48) and equations (60)
and (61) it leads to the following form of our heat
transfer problem

w-region
B-phase transport equation

KTyt
Eﬁw(pcp)ﬁ 6:

+(pep)sV - (K¥p2ul Tp)h)

—(pcp)pV * [(Wgge, +15,,)<TpDE)
=V (K, - V<Tph) — (@.h)(KTp)h —<T,»;) (65a)

o-phase transport equation

bra0Ep)s 52— (p) V- [+ 0po KT, 2] =
VKoo VL) ~ @ (TS T (65)
conditions at the &y boundary
BC.L (T, = (T, (65¢)
B.C2 n,, (K&, -V{Tp%)
=ty VT by KT —(T0) (650

BC3 nwrl .(Kaw ) V<TE>Z)) = hﬂa(( Tﬂ>£) - < TG>Z))
(65¢)

B.C.4 (vp), =(vz), atthe w—n boundary.

(650
n-region
B-phase transport equation
(Tt
(pcP)ﬁ <a:>” + (pcp)ﬁv .(<vﬁ>ﬂ<Tﬂ>5)
=V -(k,V<Tp>}) (658)

Here we have simplified the nomenclature by use of
the following representations

Ki, = Kis + K5, (66a)
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Ko'w = Kaﬂw+K¢raw' (66b)
2.4. Local thermal equilibrium

Local thermal equilibrium is characterized by the
approximation

(Tl =<T,05 =<T»

and the constraints associated with this condition have
been considered in depth [35-37]. When the condition
of local thermal equilibrium is imposed on equations
(65) we obtain

(67)

w-region

0
po (P )s-+ 30 06,), 1 o0 0y V(<2 T)

=V-(KZ-VT)) (68a)

boundary conditions

B.C.1 (T)>=(T;»! atthe w1 boundary
(68b)
B.C.2 ny, (KX VCTD) =n,, (k,V{T;")
at the w—» boundary (68c)

B.C.3 (¥, = (¥4, atthe w—y boundary.

(68d)
n-region
B-phase transport equation
KTyt
(Pers ST+ (e V(T
=V (k;V{Tp)E). (68e)

In this representation of the heat transfer problem we
have combined the thermal dispersion tensors accord-
ing to

Kz = K;ﬂw + K;aw + Kaﬂu) + Kaaw (69)

and we have discarded the convective-like terms on
the basis of the work of Quintard and Whitaker [30].

3. CONCLUSIONS

In this work we have developed the flux jump con-
ditions between a porous medium and a homogeneous
fluid when the condition of local thermal equilibrium
is not valid. Under these circumstances, separate
transport equations are required for each phase. The
jump conditions at the boundary between the porous
medium and the homogeneous fluid contain an excess
surface heat exchange term that controls the way in
which the total flux is distributed between the two
phases. Either careful experimental studies or detailed
numerical experiments are needed to determine the
excess surface heat transfer coefficient. As an estimate,
hg, can be equated to the traditional heat transfer
coefficient for flow in porous media, and values of A

J. A. OCHOA-TAPIA and S. WHITAKER

are available from a variety of sources [25, 31, 37, 41,
42, 45, 46).
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APPENDIX

We begin the development of the energy flux condition, or the surface energy transport equation, with the generalized
volume averaged encrgy equation for the S-phase written in the form

7
E(%(P%)ﬂ( Tp>ﬁ) +Vv: (83(P€p)a<vﬁ>ﬁ< Tﬂ>ﬂ) -V ((P%)ﬂ“ﬁﬂ( T5>ﬁ) -V ((pcp)ﬂ“ﬁa< 7,57

= V- (Kl V<P +KE, - VCT,)7) — a h(( T —<T,)°)  (AD)

It is convenient to use an integral statement of this result that is comparable to that used in the development of jump
conditions at phase interfaces [38, 40]. To this end, we let ¥”(f) be a volume bounded by a surface &/, (¢) which has a speed
of displacement [38] given by {v;)*-n where n is the outwardly directed unit normal vector associated with the surface
o (). This volume is illustrated in Fig. Al, and in terms of " (¢) the integral statement of equation (A1) is given by
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® -1 boundary

AU

Fig. Al. Large-scale volume.

n((pcy) s T5)") dA—J n- ((oc,)pup,<T,>7) d4

o ()

d
dr va(z) (Es(pep)p<Tp") AV — J‘

o ()

=J n- (K% - V(T>* +KE, - V(T,)") dA—J a, (T —<(T,>)dV. (A2)
A (D)

LG
The portion of ¥ () that lies in the w-region will be designated by V,,(¢) while the part that lies in the #-region will be
identified by V, (7). It follows that

Vo) = Vo) +V,() (A3)

The form of equation (A1) that is valid in the homogeneous w-region is given by
w-region

0
E(eﬁw (Pcp)ﬂ<Tﬁ>£,) +V- (g0 (Pcp)ﬂ<"ﬁ>£;< T/!>5:) -v- ((Pcp)p“pﬁm<Tﬂ>Z) -V ((pcp)ﬂuﬂam< 1,50
=V (Ko ' V<Tp)h + Koo, VT — @) (KTph—<T,)7)  (Ad)

while for the homogeneous 7-region we find
y-region

0
5P TON+ Y (0o <¥p2r<Tpdn) =V (kg VT 7). (A3)

In order to develop the energy jump condition, we need to integrate equations (A4) and (AS) over V,(f) and V,(9),
respectively, and then subtract those two integral equations from equation (A2). In this manner we will obtain a jump
condition that can be used with equations (A4) and (AS) to produce a solution to the energy transport process that will
satisfy the integral given by equation (A2), i.e. equation (A1) will be satisfied on the average. We can make use of the general
transport theorem [48] to express the integral of equation (A4) as

n,," (Eﬂw(PCp)p<Vﬂ>fl< T;x>£;) d4 ”I n,, * ((pc,) sgp.< Tﬂ>£) + (pep) g0l T, 05) dA4

A0

d
d—,f (sﬁm<pc.,),,<Tﬁ>£)dV+f
Va0

Am(z)

—J 0, * ((0Cp) pups.{ Tp D + (0Cp) g0, T, >3) dA
A (1)

=[ n, " (Kip., " V<Tp)h + Kk, - VKT, )5) d4 +J N, * (Kfs, - V<Tp)l + Koo - VT, D) dA
4,0

Ao ®

—J (@R KTh—<T, >0 dV  (A6)
Vol
while the integral of equation (A5) takes a somewhat simpler form given by

d
@ (pep) < TpDEydV + j n,, - ((pc,) <0 Y TpHE) dd = f n, - (kgV{TpH8)dA+ f n,, (k,V{T;X5)dA. (A7)
v, 4,0 A,

] "

Amu
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Fig. A2. Unit vectors.

The unit normal vectors contained in these results are identified in Fig. A2, and one should be careful to note that the speed
of displacement of the surface, 4, (t) = A4,,(f), is zero for the system illustrated in Fig. Al.

Before subtracting equations (A6) and (A7) from equation (A2) in order to develop the jump condition, we should define
the excess surface thermal energy according to

Excess surface thermal energy

d d d d
-d_J ea(pcp)s TP dV = d_J 85, (pcy)pTpdE AV + H“J. (pcp)ﬂ<Tﬂ>ng+a_J (pcp)elTpidV.  (A8)
L t).w v d

Ay

Here we note that the term on the left hand side represents all the thermal energy contained in the volume ¥ (7). The first
two terms on the right hand side represent the thermal energy contained in ¥, () as determined by equations (A4) and (AS5)
and since these equations are not valid in the boundary region the first two terms on the right hand side of equation (AS8)
will not necessarily be equal to the term on the left hand side. Inclusion of the excess surface thermal energy in the jump
condition will assure us that the total time rate of change of thermal energy will be given correctly by the solution of
equations (A4) and (A5).

Equation (A8) is the preferred representation of an excess function; however, sometimes it is convenient to use the
alternate form given by

Excess surface thermal energy
d B B d B B d 8
T (Sﬁ(pcp)l?<Tﬁ> ‘Eﬂm(PCp)ﬁ<Tﬁ>w) dV+— (Ep(PC’p)ﬂ<Tﬁ> - (pcp)ﬂ<Tﬁ>q) dv = — (pcp)ps<Tﬁ>s dav.
dr V.0 dt Vo dt 4,
(A9)

When we subtract equations (A6) and (A7) from equation (A2) and make use of the definition of the excess surface thermal
energy given by equation (A8), we obtain

d
aj (PCp)tzs<Trx>§r dV—I Dy ((pcp)ﬂ<vﬂ>m<Tﬂ>£)_(pcp)ﬂ<vﬁ>n<Tﬁ>g) d4
A0 4,0

- j n,, - [((pcp)pups Tﬂ>ﬁ —(pcp)puppa Tﬂ>f,) + ((pcy) pup{ Ty )* — (pcp) plgo0{ T 3)] dA
JALD

- J n,* [((pey) pugp{ Tpd* —0) + ((pey) g5, T, > —0)] dA + J 0, * ((pC,) gl Tp b+ (0C,) g5, T, )%) d A
4,0

A,

=J n,,* [(Kiy  V<Tp)? + K, - V<T,)7) — (K, - VSTl +KE,, - VCT, )5)] d4
A,

+J n, * [(K# - V<Tp)P + KL, - VT, )%) — kpV< T 0] dA —‘[ N, [(Khs - V<Tp0h + Kb (T00) — kg V< T dA
4,00

A ()

—J [ah(KTp>" —<T,)7) — (@h)oKTp)b = <T,)0)] dV—J [ah({Tp)" —<T,)7)—01dV. (A10)
Vo

A0
Here we have used strategically placed zeros in order to clearly identify those groups of terms that have the form indicated
by the left hand side of equation (A9) and can therefore be represented in terms of excess surface functions. We begin with
the convective-like terms and define the surface excess transport as
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Excess surface convective-like transport

§C n* [(pcp)ﬁs (“ﬂB)s( Tﬂ>£ + (pcp)ﬁs (uﬂa)s< Ta>g] dO‘
= f n,, * [((pep) pugsd Tﬂ>ﬂ - (pcp)ﬂub‘ﬁm<Tﬂ>£:) + ((P6p) pup < T > — (pC,) g0 T D2)] d A
A4,

+J n, - [((pcp)puss< T — 0) + ((pcp)pus (T, )7 —0)]d4.  (AlD)

4,00
The conductive transport terms in equation (A10) naturally lead to the definition

Excess surface conductive transport

§ 0, (K Vi< Tp)! + K - VKT, D7) do
(o)
= J o, [(Kls - V<T,) + K5, - VAT, D7) — (K - V<TI0l + K, - VKT, )0)] d4
4,0

+j n, - [(K¥ - VT30 + K3, - VT, )7 — (k,V{Tp)E)]dA.  (Al12)
4,0

Finally we define the excess surface heat exchange according to

Excess surface heat exchange

J (a )Tt —(T,»))dA = j {[le (T —<T. 0 — (@), Tp)h — T, O} dV
A

V(D

+I {lah) (T’ —<T,))1-[01} dV. (Al3)
40
With these definitions the integral form of the jump condition can be expressed as

d
_J‘ (pcp)ﬁs<TB>de-J n,,* ((pcp)ﬁ<vﬁ>m<Tﬂ>£:_(pcp)ﬂ<vﬁ>n<Tﬂ>5) d4
w0

de ], A,

- §C 0, [(0¢,) 5 (W) L TpDE + (pCp) s (g, )< T, >8] do + j 0., ((Pe) g Tp Dl + (pCp) W50, (T, >5) dA

A

= *[ N~ (K, - VSTl + Ko - VST 00) — kg VAT )01 d4
A

X§Cns'(K;ﬂs'Vs<Tﬂ>g+ngs.Vs<Ta>:)da_[ (@h) (Tt —<T,>)d4. (Al4)

A0

We can now use the surface transport theorem [40] and the surface divergence theorem [49] to place all the terms in this
integral equation under the same integral sign and thus extract the differential form of the jump condition. This can be
expressed in the form

Ty
(Peo)ps <af> + ¥, (06 pe VDol Ty — (Ko V(T + Ko V(T
%F—J

excess surface convective and conductive transport

excess surface
accumnulation

- \Vs ° [(pcP)Bs (“ﬁﬁ)s( TB>£ + (pcp)ﬁs (uﬁa)s<Ta >sa]J + nam ‘ ((pcp)ﬂuﬂﬂw<Tﬁ >5) + (pcp)ﬂ“ﬂam<To‘ >Z:)

excess surface convective-like transport

— Moy [(pey) <V oS Tp Dl — K - VT — K, - VLT, 0

= =y, [(0ep)s<Vp0u S T — kg V< Tp)f] — () KT =< T,)7) (AlLY)

excess surface heat exchange
Results can be simplified by imposing the continuity conditions
B.C.1 <(Tp)h =<(T;» atthe w1 boundary (A16)
B.C.2 <(vg), =<vg), atthe w—nboundary (A17)

since this eliminates the convective transport term from equation (A15) and we obtain
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Jump condition for the f-phase

KTyt
(pcP)ﬂS <atﬂ>s +\Vs * |,(pcp)ﬂs<vﬂ>s<Tﬂ>£ - (K;‘Bs * Vs<Tﬂ>£ +K;‘as ’ Vs<Tv>:)]
- — M

excess surface convective and conductive transport
excess surface
accumulation

— . 10068 Wpp)e ST+ (96) 3 U)oL T 2] + Ty ((960) s03aC TP+ (90) Mg (T D)

excess surface convective-like transport normal flux of convective-like transport

0y, (K - V<TpE + Ko, - VCTL00) =y (R V<T)) — (@) KT —<T.X)  (AlB)

excess surface heat exchange
The analysis for the o-phase will be identical to that which led us to equation (A18) and we simply list the result as

Jump condition for the g-phase

o(T,)?
(pcl’)ﬂs <at> '—\Vs'[(Kaﬂs'V5<Tﬁ>sﬂ+Kaas.Vs<To'>su),]
- M

excess surface conductive transport

excess surface
accumulation

_Lvs * [(pcp)as(uﬂﬂ)s< Tﬂ>£ + (pcp)os(“vu)s< Tu>:]}+ {lwr] ‘ [(pcp)d“o'ﬂw< Tﬁ>£) + (pcp)v“ﬂuw< Ta>5)]

excess surface convective-like transport normal flux of convective-like transport
04, * Koo VT +Kog VST, 30) = (@) KTpf —<T,)7). (A19)
excess surface heat exchange

Clearly these two jump conditions, in their general form, are very complicated ; however, it seems likely that surface transport
and the convective-like flux can be neglected in order to obtain useful forms of these two results.



